Skip to main content

Can task design link concepts?

If we created similar looking tasks for concepts, can they help students make links? 

Most questions we give students look like this.

1) 37 + 18 = 
2) 45 + 29 = 
3) 89 + 24 = 
4) 65 + 72 =
5) 34 + 23 =
6) 92 + 52 =
7) 23 + 10 =
8) 67 +29 = 
9) 16 + 44 =
10) 34 + 92 =


Even if we vary the questions effectively and seek to learn something about the underlying concept, some students may not realise that adding integers is the same process as collecting like terms and that it is also the same as adding decimals. Or that expanding brackets is the same process as multiplying integers or fractions. Could making the tasks we give to students similar, encourage these links? 

The classic 10/20 questions given to students can potentially take time to plan/find and select for your students. Then you may need to think about ways of extending learning or offering further support to weaker students. There is lots to plan for a section of deliberate practice. Surely there must be a more efficient and effective way?

Whenever I look to change my teaching practice it must be 1. Beneficial to the students and 2. Be manageable for me to actually plan and adapt in lesson. I like to think of the stages of the task as either doing or undoing, from Mathematical Tasks by Chris McGrane and Mark McCourt.

Addition Using Pyramids

Stage 1 - Doing

This would be where students are actually doing the addition task, so adding for example adding together two integers to find the value of the block above. I have even put an example looking at perimeter of shapes where you could leave the block above up to the imagination of students as to what shape it would produce.




We can obviously decide on the bottom row ourselves to make this easier or harder to start with. Students can then do multiple addition calculations to reach the top number. As a teacher you have only had to think of 3/4 numbers depending on how wide you make your pyramid. 

Stage 2 - Undoing

I like the idea of doing and undoing style task so incorporating subtraction into addition. So we could from this stage take the top answer of ... and ask students to start with the top number and fill in the gaps below. 

What would an easy one look like? 

What would a hard one look like? 

Could you include decimals/negatives etc?

Again, no extra work for the teacher but it could encourage some nice discussions about starting with certain numbers e.g. all odd numbers do we get an odd answer every time? Primes, is there a pattern? 1 digit numbers, do we always get a 3 digit number? Etc





I think the pyramid idea works well for addition because of the building blocks idea. It may even be worth using a frequency tree format so that we can link it to frequency trees, number partitioning in place value etc. 

It makes me think about what other processes/concepts could we use a similar format for? And would this improve the connections that students make between topics? One thing I do know is that it can make planning easier and encourage students to think hard about their answers in particular when 'undoing' a task.

Popular posts from this blog

Equivalent Fractions with Ratio Tables

The following is a slide taken from NCETM Checkpoints. I was happy with the fraction pair on the right but the left stumped me! Then I had that 'aha' moment!  What I used to do I never used to teach equivalent fractions like the one on the left to my classes. I would just use arrows to multiply both numerator and denominator to find an equivalent fraction, very similar to the fractions on the right.  The issue with this though is, like me, students don't necessarily see all of the multiplicative relationships between the fractions as well as within the fraction. They are missing that key knowledge to support them answering the first pair of fractions.   What I do now Ratio tables allow students to see those multiplicative links. By doing this it makes questions like the checkpoints task much easier for students to do.  Disclaimer: this isn't the only way I teach equivalent fractions. I also show students how prime factors can also help us. There will be a future...

Literacy in Maths

I'm a Maths teacher, I teach numbers. Why is Literacy so important for me? Well….here's why: "Literacy is fundamental for success in school and later life. Students who cannot read, write and communicate effectively are highly unlikely to access the challenging academic curriculum in secondary school and are more likely to have poor educational outcomes across all subjects." (Link 3)  Unfortunately there are a lot of Maths teachers who believe (wrongly) that literacy is a thing that the English department do. They see it as a tick box for observations. Rather than being an essential component of students being able to learn maths.  -  So what does it look like in Maths? Answer the question: Blindle 4x + 6 Are you able to do it?  This is the challenge a lot of students face in Mathematics. Subject specific vocabulary can seem really confusing to a lot of students. Understanding what a keyword is asking of students is often the hardest part of a question and can hold s...

Percentages with Ratio Tables

What if I said you could teach your students one thing and they could answer everything to do with Percentages? Don't believe me? Let me show you: Finding a percentage of an amount Q: Find 20% of 925 Increasing/Decreasing by a percentage Q: Decrease 45 by 16% Expressing as a percentage Q: A cereal bar weighs 24g. The cereal bar contains 3.6g of protein. Work out what percentage of the cereal bar is protein Percentage Change Q: Rebecca bought a dress for £80.  She later sold it for £116. Find the percentage profit. Reverse Percentages Q: A car increases in value by 35% to £2500. What was its original price? Ratio tables can be used for it all. There is obviously going to need to be some further teaching about what an increase/decrease is, how to work out the multiplier etc, but it is a great tool we should all be using more often You may have worked out by now that I like using Ratio tables.